213 research outputs found

    Interventional bronchoscopy for benign tracheobronchial diseases under cardiopulmonary bypass support: case reports and literature review

    Get PDF
    The use of cardiopulmonary bypass as an adjunct to airway surgery for non-malignant diseases in adults is not well established in the UK. We are reporting two cases which demonstrate the additional benefits of using cardiopulmonary bypass during difficult bronchoscopy and complex airway stenting. The first case presents an emergency indication for cardiopulmonary bypass in a life-threatening but benign condition. The second case presented, utilises cardiopulmonary bypass standby as adjunct to a potentially life threatening procedure. A review of the literature is also provided

    Affimer proteins for F-actin: novel affinity reagents that label F-actin in live and fixed cells

    Get PDF
    Imaging the actin cytoskeleton in cells uses a wide range of approaches. Typically, a fluorescent derivative of the small cyclic peptide phalloidin is used to image F-actin in fixed cells. Lifeact and F-tractin are popular for imaging the cytoskeleton in live cells. Here we characterised novel affinity reagents called Affimers that specifically bind to F-actin in vitro to determine if they are suitable alternatives as eGFP-fusion proteins, to label actin in live cells, or for labeling F-actin in fixed cells. In vitro experiments showed that 3 out of the 4 Affimers (Affimers 6, 14 and 24) tested bind tightly to purified F-actin, and appear to have overlapping binding sites. As eGFP-fusion proteins, the same 3 Affimers label F-actin in live cells. FRAP experiments suggest that eGFP-Affimer 6 behaves most similarly to F-tractin and Lifeact. However, it does not colocalize with mCherry-actin in dynamic ruffles, and may preferentially bind stable actin filaments. All 4 Affimers label F-actin in methanol fixed cells, while only Affimer 14 labels F-actin after paraformaldehyde fixation. eGFP-Affimer 6 has potential for use in selectively imaging the stable actin cytoskeleton in live cells, while all 4 Affimers are strong alternatives to phalloidin for labelling F-actin in fixed cells

    Preoperative Behavioural Intervention versus standard care to Reduce Drinking before elective orthopaedic Surgery (PRE-OP BIRDS):Protocol for a multicentre pilot randomised controlled trial

    Get PDF
    Background Evidence suggests that increased preoperative alcohol consumption increases the risk of postoperative complications; therefore, a reduction or cessation in alcohol intake before surgery may reduce perioperative risk. Preoperative assessment presents an opportunity to intervene to optimise patients for surgery. This multicentre, two-arm, parallel group, individually randomised controlled trial will investigate whether a definitive trial of a brief behavioural intervention aimed at reducing preoperative alcohol consumption is feasible and acceptable to healthcare professionals responsible for its delivery and the preoperative elective orthopaedic patient population. Methods Screening will be conducted by trained healthcare professionals at three hospitals in the North East of England. Eligible patients (those aged 18 or over, listed for elective hip or knee arthroplasty surgery and scoring 5 or more or reporting consumption of six or more units on a single occasion at least weekly on the alcohol screening tool) who enrol in the trial will be randomised on a one-to-one non-blinded basis to either treatment as usual or brief behavioural intervention delivered in the pre-assessment clinic. Patients will be followed up 1–2 days pre-surgery, 1–5 days post-surgery (as an in-patient), 6 weeks post-surgery, and 6 months post intervention. Feasibility will be assessed through rates of screening, eligibility, recruitment, and retention to 6-month follow-up. An embedded qualitative study will explore the acceptability of study methods to patients and staff. Discussion This pilot randomised controlled trial will establish the feasibility and acceptability of trial procedures reducing uncertainties ahead of a definitive randomised controlled trial to establish the effectiveness of brief behavioural intervention to reduce alcohol consumption in the preoperative period and the potential impact on perioperative complications

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Condensed Mitotic Chromosome Structure at Nanometer Resolution Using PALM and EGFP- Histones

    Get PDF
    Photoactivated localization microscopy (PALM) and related fluorescent biological imaging methods are capable of providing very high spatial resolutions (up to 20 nm). Two major demands limit its widespread use on biological samples: requirements for photoactivatable/photoconvertible fluorescent molecules, which are sometimes difficult to incorporate, and high background signals from autofluorescence or fluorophores in adjacent focal planes in three-dimensional imaging which reduces PALM resolution significantly. We present here a high-resolution PALM method utilizing conventional EGFP as the photoconvertible fluorophore, improved algorithms to deal with high levels of biological background noise, and apply this to imaging higher order chromatin structure. We found that the emission wavelength of EGFP is efficiently converted from green to red when exposed to blue light in the presence of reduced riboflavin. The photon yield of red-converted EGFP using riboflavin is comparable to other bright photoconvertible fluorescent proteins that allow <20 nm resolution. We further found that image pre-processing using a combination of denoising and deconvolution of the raw PALM images substantially improved the spatial resolution of the reconstruction from noisy images. Performing PALM on Drosophila mitotic chromosomes labeled with H2AvD-EGFP, a histone H2A variant, revealed filamentous components of ∼70 nm. This is the first observation of fine chromatin filaments specific for one histone variant at a resolution approximating that of conventional electron microscope images (10–30 nm). As demonstrated by modeling and experiments on a challenging specimen, the techniques described here facilitate super-resolution fluorescent imaging with common biological samples

    Characterization of the linkage disequilibrium structure and identification of tagging-SNPs in five DNA repair genes

    Get PDF
    BACKGROUND: Characterization of the linkage disequilibrium (LD) structure of candidate genes is the basis for an effective association study of complex diseases such as cancer. In this study, we report the LD and haplotype architecture and tagging-single nucleotide polymorphisms (tSNPs) for five DNA repair genes: ATM, MRE11A, XRCC4, NBS1 and RAD50. METHODS: The genes ATM, MRE11A, and XRCC4 were characterized using a panel of 94 unrelated female subjects (47 breast cancer cases, 47 controls) obtained from high-risk breast cancer families. A similar LD structure and tSNP analysis was performed for NBS1 and RAD50, using publicly available genotyping data. We studied a total of 61 SNPs at an average marker density of 10 kb. Using a matrix decomposition algorithm, based on principal component analysis, we captured >90% of the intragenetic variation for each gene. RESULTS: Our results revealed that three of the five genes did not conform to a haplotype block structure (MRE11A, RAD50 and XRCC4). Instead, the data fit a more flexible LD group paradigm, where SNPs in high LD are not required to be contiguous. Traditional haplotype blocks assume recombination is the only dynamic at work. For ATM, MRE11A and XRCC4 we repeated the analysis in cases and controls separately to determine whether LD structure was consistent across breast cancer cases and controls. No substantial difference in LD structures was found. CONCLUSION: This study suggests that appropriate SNP selection for an association study involving candidate genes should allow for both mutation and recombination, which shape the population-level genomic structure. Furthermore, LD structure characterization in either breast cancer cases or controls appears to be sufficient for future cancer studies utilizing these genes

    Preservation of large-scale chromatin structure in FISH experiments

    Get PDF
    The nuclear organization of specific endogenous chromatin regions can be investigated only by fluorescence in situ hybridization (FISH). One of the two fixation procedures is typically applied: (1) buffered formaldehyde or (2) hypotonic shock with methanol acetic acid fixation followed by dropping of nuclei on glass slides and air drying. In this study, we compared the effects of these two procedures and some variations on nuclear morphology and on FISH signals. We analyzed mouse erythroleukemia and mouse embryonic stem cells because their clusters of subcentromeric heterochromatin provide an easy means to assess preservation of chromatin. Qualitative and quantitative analyses revealed that formaldehyde fixation provided good preservation of large-scale chromatin structures, while classical methanol acetic acid fixation after hypotonic treatment severely impaired nuclear shape and led to disruption of chromosome territories, heterochromatin structures, and large transgene arrays. Our data show that such preparations do not faithfully reflect in vivo nuclear architecture. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00412-006-0084-2 and is accessible for authorized users

    Rescuing Loading Induced Bone Formation at Senescence

    Get PDF
    The increasing incidence of osteoporosis worldwide requires anabolic treatments that are safe, effective, and, critically, inexpensive given the prevailing overburdened health care systems. While vigorous skeletal loading is anabolic and holds promise, deficits in mechanotransduction accrued with age markedly diminish the efficacy of readily complied, exercise-based strategies to combat osteoporosis in the elderly. Our approach to explore and counteract these age-related deficits was guided by cellular signaling patterns across hierarchical scales and by the insight that cell responses initiated during transient, rare events hold potential to exert high-fidelity control over temporally and spatially distant tissue adaptation. Here, we present an agent-based model of real-time Ca2+/NFAT signaling amongst bone cells that fully described periosteal bone formation induced by a wide variety of loading stimuli in young and aged animals. The model predicted age-related pathway alterations underlying the diminished bone formation at senescence, and hence identified critical deficits that were promising targets for therapy. Based upon model predictions, we implemented an in vivo intervention and show for the first time that supplementing mechanical stimuli with low-dose Cyclosporin A can completely rescue loading induced bone formation in the senescent skeleton. These pre-clinical data provide the rationale to consider this approved pharmaceutical alongside mild physical exercise as an inexpensive, yet potent therapy to augment bone mass in the elderly. Our analyses suggested that real-time cellular signaling strongly influences downstream bone adaptation to mechanical stimuli, and quantification of these otherwise inaccessible, transient events in silico yielded a novel intervention with clinical potential
    • …
    corecore